Abstract
The possibility of using waste distillery stillage (first-generation technology) after dilute acid pretreatment, as a medium for the preparation of beet molasses mash, for ethanol production according to the simultaneous saccharification and fermentation (SSF) technology, was assessed. The combination of lignocellulosic hydrolysates made from acid-pretreated stillage with sugar-rich beet molasses is an effective way of utilizing the first-generation ethanol production by-products in the second-generation ethanol production technology. It was demonstrated that the final ethanol concentration could be as high as 90 g/L. The process yield was over 94% of the theoretical yield when the molasses was diluted using acid-pretreated maize distillery stillage. An attempt to increase the pool of fermentable sugars by using cellulases to hydrolyze cellulose failed due to product inhibition in the fermentation medium with a high glucose concentration. A more than threefold increase in the concentration of ethyl acetate (even up to 924.4±11.8 mg/L) was observed in the distillates obtained from the media incubated with cellulases. The use of beet molasses combined with the hydrolysate of pretreated distillery stillage also changed the concentration of other volatile by-products. An increase in the concentration of aldehydes (mainly acetaldehyde to a concentration of above 1500 mg/L), methanol, 1-propanol, and 1-butanol was observed, while the concentration of higher alcohols (isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol) decreased. Interestingly, the use of cellulases in fermentation media from molasses and stillage hydrolysates resulted in an average fourfold increase in the concentration of this ester to a maximum level of 924.4±11.8 mg/L. Hydrolysates made from acid-pretreated distillery stillage, combined with sugar-rich beet molasses to boost the efficiency of the conversion process, can be successfully used in the production of second-generation fuel ethanol. However, further optimization of the cellulose enzymatic hydrolysis process is required for efficient use of the raw material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.