Abstract

The article illustrates the advantages of partitioning the total electron density rho(rb), its Laplacian (inverted Delta)2 rho(rb), and the energy density H(rb) in terms of orbital components. By calculating the contributions of the mathematically constructed molecular orbitals to the measurable electron density, it is possible to quantify the bonding or antibonding character of each MO. This strategy is exploited to review the controversial existence of direct Fe-Fe bonding in the triply bridged Fe2(CO)9 system. Although the bond is predicted by electron counting rules, the interaction between the two pseudo-octahedral metal centers can be repulsive because of their fully occupied t(2g) sets. Moreover, previous atoms in molecules (AIM) studies failed to show a Fe-Fe bond critical point (bcp). The present electron density orbital partitioning (EDOP) analysis shows that one sigma bonding combination of the t(2g) levels is not totally overcome by the corresponding sigma* MO, which is partially delocalized over the bridging carbonyls. This suggests the existence of some, albeit weak, direct Fe-Fe bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.