Abstract

Hematological malignancies frequently have a poor prognosis and often remain incurable. Drug resistance, severe side effects, and relapse are major problems of currently used drugs, and new candidate compounds are required for improvement of therapy success. The naphthoquinone shikonin derived from the Chinese medicinal herb, Lithospermum erythrorhizon, is a promising candidate for the next generation of chemotherapy. The basal cellular mechanism of shikonin is the direct targeting of mitochondria. Cytotoxicity screenings showed that the compound is particularly effective against leukemia cells suggesting an additional cellular mechanism. mRNA and miRNA microarrays were used to analyze changes in gene expression in leukemia cells after shikonin treatment and combined with stable-isotope dimethyl labeling for quantitative proteomics. The integration of bioinformatics and the three “-omics” assays showed that the PI3K-Akt-mTOR pathway was affected by shikonin. Deregulations of this pathway are frequently associated with cancerogenesis, especially in a wide range of hematological malignancies. The effect on the PI3K-Akt-mTOR axis was validated by demonstrating a decreased phosphorylation of Akt and a direct inhibition of the IGF1R kinase activity after shikonin treatment. Our results indicate that inhibiting the IGF1R-Akt-mTOR signaling cascade is a new cellular mechanism of shikonin strengthening its potential for the treatment of hematological malignancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.