Abstract

Technological advancements in recent decades have greatly transformed the field of material chemistry. Juxtaposing the accentuating energy demand with the pollution associated, urgent measures are required to ensure energy maximization, while reducing the extended experimental time cycle involved in energy production. In lieu of this, the prominence of catalysts in chemical reactions, particularly energy related reactions cannot be undermined, and thus it is critical to discover and design catalyst, towards the optimization of chemical processes and generation of sustainable energy. Most recently, artificial intelligence (AI) has been incorporated into several fields, particularly in advancing catalytic processes. The integration of intensive data set, machine learning models and robotics, provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques. The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst, with extreme accuracy and swiftness comparable to a number of human researchers. Although, the utilization of robots in catalyst discovery is still in its infancy, in this review we summarize current sway of artificial intelligence in catalyst discovery, briefly describe the application of databases, machine learning models and robots in this field, with emphasis on the consolidation of these monomeric units into a tripartite flow process. We point out current trends of machine learning and hybrid models of first principle calculations (DFT) for generating dataset, which is integrable into autonomous flow process of catalyst discovery. Also, we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.