Abstract

Blue light is used less in photobiomodulation than red or near-infrared light because of concerns about its high energy. However, some reports have suggested that blue light releases NO from nitrosated proteins, affects cell signal regulation, and promotes stem cell differentiation. Because blue and red lights could have different mechanisms of action, their combination is expected to have new consequences. In this study, human dental pulp stem cells (hDPSCs) were sequentially exposed to blue and near-infrared light to study their effects on proliferation, osteogenic differentiation, and immunomodulation. We found that NIR irradiation applied after blue light can reduce blue light toxicity improving the cell viabiltiy. Delayed luminescence and transmission electron microscopy studies showed that this combination excited hDPSCs and activated mitochondrial biogenesis. Those modulations accelerated hDPSC differentiation, as shown by an increase of about 1.3-fold in alkaline phosphatase activity in vitro and an about 1.5-fold increase in the osteocalcin-positive regions in cells implanted in nude mice compared with mice exposed to near-infrared alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call