Abstract

2D material-based membranes have emerged as promising candidates for next-generation separation technology due to their exceptional permeability and selectivity. Integration of these membranes into microfluidic devices has offered significant potential for improving the efficiency, throughput, and precision. However, designing compact and reliable microfluidic devices with membranes has many challenges, including complexities in membrane integration, analyte measurement, and contamination issues. Addressing these challenges is critical for unlocking the full potential of membrane-integrated devices. This paper proposes a systematic procedure for integrating membranes into a microfluidic device by creating a pore in the middle layer. Furthermore, an ion transport experiment is carried out across various stacked graphene and poly carbonate track etch membranes in an Ostemer-based device. The resulting device is capable of facilitating the concurrent measurement, a task that is cumbersome in standard macroscopic diffusion cells. The transparency and compactness of the microfluidic device allowed for the in situ and real-time optical characterization of analytes. The integration of microfluidic devices with 2D nanoporous membranes has enabled the incorporation of several analytical modalities, resulting in a highly versatile platform with numerous applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call