Abstract

The integration of porous membranes with microfluidic devices allows a simple but high-throughput mass transport control for numerous microfluidic applications, such as single-cell separation, sample analysis, and purification. In this study, we demonstrate a novel integration process of porous membranes into microfluidic devices by applying a magnetic field and hydrodynamically stabilizing them. This new approach simplifies the integration process by removing physicochemical bonding between membranes and microfluidic devices, but overcomes many practical issues observed in current methods, such as device leakage, membrane replacement, and membrane material selection. More importantly, our approach allows us to install membranes with diverse physicochemical features and spatial configurations into a single microfluidic device. This additional ability can significantly improve its performance and capability in applications. Finally, we successfully demonstrate the utilization of our membrane device for simple particle separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call