Abstract

AbstractPolyimides externally deployed in spacecraft or satellites extensively have various aerospace hazards, including atomic oxygen (AO) erosion, irradiation degradation, and electrostatic charge/discharge (ESC/ESD). To cope with these challenges, we fabricate a ZnO/CuNi‐polyimide composite film with augmented permanence. Using spectroscopy and microscopy techniques, we have shown that the combination of chelation and cross‐linking in the interfacial architecture leads to enhanced interfacial compatibility and mechanical robustness. Besides, due to the positive AO diffusion barrier ability of the wurtzite ZnO, our composite film shows remarkable AO resistance and a very small Ey value of 6.88 × 10−26 cm3/atom, which is merely 2.29% of that of pristine polyimide. Moreover, the well‐defined nanocrystalline state with minimal lattice swelling (0.3%–0.7%) of the Fe+‐irradiated ZnO/CuNi‐polyimide at a damaging dose of 353.4 dpa demonstrates its excellent irradiation resistance. Finally, the ZnO/CuNi‐polyimide also shows sufficient electrostatic dissipation capacity to cope with the ESC/ESD events. Our fabrication approach for composite films based on multi‐technology integration shows potential for aerospace applications and deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.