Abstract

We have used the Southern blotting technique to analyze the integration patterns of human adenovirus sequences in the DNA of four rat cell lines, F17, 8617, T2C4 and F4, which were transformed by Ad-2 virus, and 5RK clone 6, which was transformed by Ad-5 HindIII-G fragment. We have also analyzed the Ad-specific messenger RNAs synthesized in these cell lines, in 293 cells (an Ad-5 transformed human cell line), and in Ad-2 early infected human KB cells, using the RNA geltransfer hybridization technique. We were interested in whether the Ad sequences are integrated, what the integration patterns are, whether the transforming region is present in an intact form, and whether the transforming region and other early regions are expressed at the mRNA level. Our results show that the integration patterns of Ad sequences range from simple to quite complex. Cells from line 8617 contain a single copy of right-end sequences flanked by left-end sequences. T2C4 cells have four different left-end sequences and two different right-end sequences. 5RK cells contain multiple different pieces of left-end sequences. In agreement with the results of Sambrook et al. (1979 a,b), F17 cells contain a single copy of the left 17% of the genome, and F4 cells contain multiple copies of the right 5% of the genome fused to the left ~ 68% of the genome. The complete Ad genome is not present in any of the cell lines, and different regions may not be equimolar. There are no specific sites on the cellular or viral genome at which integration occurs. In 8617, F17 and F4 cells the Ad-2 sequences appear to be located close together on a single chromosome, suggesting that the Ad sequences in these cells arose from a single integration event. F17, 8617, T2C4, F4, and probably 5RK, cells all have an intact early region E1a (map position 1·3–4·6); F17, 8617, T2C4 and F4 cells also have E1b (m.p. 4·6–11·2) intact. E1a and E1b are the regions responsible for transformation. 8617 cells also have an intact early region E4 (m.p. 99-91·5) and T2C4 cells have an intact early region E3 (m.p. 76–86). Ad-2 early infected KB cells were shown to synthesize major E1a-specific mRNAs of 13 S, 12 S and 9 S, and major E1b-specific mRNAs of 22 S and 13 S. All the transformed cells synthesize the E1a 13 S and E1a 12 S mRNAs, and all cells except 5RK synthesize the E1b 22 S and E1b 13 S mRNAs. Early infected KB cells synthesize E3-specific mRNAs of 26 S, 24 S, 22 S, 19 S, 12 S and 9 S: T2C4 cells synthesize the major 22 S and 19 S RNA species, and possibly the less pronounced E3 mRNAs. Early infected cells and 8617 cells synthesize E4-specific mRNAs of 19 S, 17 S, 14 S, 12 S, 11 S, 9 S and 8 S. 8617 cells also synthesize E4 mRNAs of about 23 to 24 S and 21 S. F4 cells synthesize 24 S and 19 S hybrid mRNAs that contain both E4 and E1a sequences: these RNAs arise because F4 cells contain a portion of the E4 region fused to the left end (m.p. 0) of the genome. Our results, as well as those from other laboratories, are consistent with the idea that the transformed phenotype of Ad transformed cells is maintained by expression of Ad genes in E1a and E1b.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call