Abstract

Due to the fast scanning speed of the current phased-array radar and the moving characteristics of the target, the moving target usually spans multiple beams during coherent integration time, which results in severe performance loss for target focusing and parameter estimation because of the unknown entry/departure beam time within the coherent period. To solve this issue, a novel focusing and detection method based on the multi-beam phase compensation function (MBPCF), multi-scale sliding windowed phase difference (MSWPD), and spatial projection are proposed in this paper. The proposed method mainly includes the following three steps. First, the geometric and signal models of multiple beam integration with observed moving targets are accurately established where the range migration (RM), Doppler frequency migration (DFM), and beam migration (BM) are analyzed. Based on that, the BM is eliminated by the MBPCF, the second-order keystone transform (SOKT) is utilized to mitigate the RM, and then, a new MSWPD operation is developed to estimate the target’s entry/departure beam time, which realizes well-focusing output within the beam. After that, by dividing the radar detection area, the spatial projection (SP) method is adopted to obtain multiple-beams joint integration, and thus, improved detection performance can be obtained. Numerical experiments are carried out to evaluate the performance of the proposed method. The results show that the proposed method could achieve superior focusing and detection performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call