Abstract

The emission peak/carbon neutrality calls for significantly improved coal-fired power plants. Sustainability of the power plants is critical to meeting the net zero targets in 2050/2060. In this context, it is necessary to investigate the integration and conversion of the supercritical carbon dioxide coal-fired power cycle and the supercritical carbon dioxide energy storage cycle. In this work, the thermodynamic model and performance criteria are firstly presented. After comparison of the two cycles, a three-step strategy for the development of the power cycle is proposed and assessed. First step: when coal still plays an important role as a main energy resource, the integrated tri-compression coal-fired supercritical compressed carbon dioxide energy storage cycle has the highest round-trip efficiency of 56.37%. Second step: with the challenge in utilization of coal energy, a trade-off among the performance criteria must be struck in the integrated cycle with various heat sources. Third step: the adiabatic supercritical compressed carbon dioxide energy storage cycle is proposed, and a high round-trip efficiency of 72.34% is achieved in the split expansion cycle. The present research provides not only a new prospect of the conventional power plants but also design guidance for the supercritical carbon dioxide energy storage cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call