Abstract

We report here a facile way to grow aligned multi-walled carbon nanotubes (MWCNTs) on various metal (e.g. gold, tungsten, vanadium and copper)/silicon electrically conductive substrates by aerosol-assisted chemical vapor deposition (AACVD). Without using any buffer layers, integration of high quality MWCNTs to the conductive substrates has been achieved by introducing appropriate amount of water vapor into the growth system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) determination indicate tidy morphology and narrow diameter distribution of the nanotubes as well as promising growth rate suitable for industrial applications. Raman spectra analysis illustrates that the structural order and purity of the nanotubes are significantly improved in the presence of water vapor. The growth mechanism of the nanotubes has been discussed. It is believed that water vapor plays a key role in the catalyst-substrate interaction and nucleation of the carbon nanotubes on the conductive substrates. This synthesis approach is expected to be extended to other catalyst-conductive substrate systems and provide some new insight in the direct integration of carbon nanotubes onto conductive substrates, which promises great potential for applications in electrical interconnects, contacts for field emitters, and other electronic nanodevices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.