Abstract

Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behaviors. In this study, we propose a novel device to test time-dependent deformation and the ultrasonic response of HBS under high-pressure and low-temperature. The experimental device consists of a high-pressure chamber, an axial-load control system, a confining pressure system, a pore pressure system, a back-pressure system, and a data collection system. This testing assembly allows temperature regulation and independent control of four pressures, e.g., confining pressure, pore pressure, back pressure, and axial loading. Columned artificial HBS samples, with a diameter of 39mm and a height of 120mm, can be synthesized in this device. Afterward, in situ creep experiments can be achieved by applying stable confining pressure and axial load, together with geophysical signals acquisition. During loading, the stress-strain relationships and ultrasonic data can be obtained simultaneously. Through analyzing the stress-strain relationship and ultrasonic data, the macroscopical failure and microcosmical creep deformation law of the samples can be figured out. Preliminary experiments verified the applicability of the device. The method provides some significance for field observation of reservoir failure via geophysical techniques during hydrate exploitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.