Abstract
Accurate land-cover mapping in regions with frequent cloud-cover and rapidly changing agricultural land cover by crop growth cycles cannot be guaranteed by use of single sensor images, or an image from a single-acquisition-date. This study addressed these challenges by applying temporal-aggregation of single sensor image features that is integrated with multi-sensor image fusion. Results of land-cover classification target fallow, growing, and harvest/post-harvest agricultural seasons. Satellite based features used were frequency bands of Sentinel-1 (S1) and Sentinel-2 (S2), including vegetation indices (VIs) and biophysical variables (BPVs). Temporal aggregation improved classification accuracy. The single-acquisition-date S2 image, overall accuracy (OA) ranged from 0.81 to 0.85, increased to 0.86 to 0.87 after temporal-aggregation. Meanwhile, for single-acquisitions of S1, OA ranged from 0.44 to 0.79 increased to 0.6 to 0.86 across respective seasons. Fusing temporally aggregated S1 and S2 image features including VIs and BPVs increased OA up to 0.90. Selecting 11, 8, and 10 out of 18 optimum numbers of features for fallow, growing, and harvest/post-harvest seasons respectively improved OA by 3%, 2%, and 1.86%. PCA fusion of the temporally aggregated best performing feature set enhanced harvest/post-harvest season, fallow, and growing seasons with OA of 0.98, 0.96 and 0.94 respectively. Accuracy was enhanced when selecting different best performing feature set for the three seasons. The study enhanced knowledge of advanced remote sensing for agricultural land cover mapping, with practical implications of land monitoring and management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have