Abstract

This paper studies the influence of lexical semantic knowledge upon two related tasks: ad-hoc information retrieval and text similarity. For this purpose, we compare the performance of two algorithms: (i) using semantic relatedness, and (ii) using a conventional extended Boolean model [12]. For the evaluation, we use two different test collections in the German language: (i) GIRT [5] for the information retrieval task, and (ii) a collection of descriptions of professions built to evaluate a system for electronic career guidance in the information retrieval and text similarity task. We found that integrating lexical semantic knowledge improves performance for both tasks. On the GIRT corpus, the performance is improved only for short queries. The performance on the collection of professional descriptions is improved, but crucially depends on the preprocessing of natural language essays employed as topics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.