Abstract

The challenging problem of computational bioimage analysis receives growing attention from life sciences. Fluorescence microscopy is capable of simultaneously visualizing multiple molecules by staining with different fluorescent dyes. In the analysis of the result multichannel images, segmentation of ROIs resembles only a first step which must be followed by a second step towards the analysis of the ROI’s signals in the different channels. In this paper we present a system that combines image segmentation and information visualization principles for an integrated analysis of fluorescence micrographs of tissue samples. The analysis aims at the detection and annotation of cells of the Islets of Langerhans and the whole pancreas, which is of great importance in diabetes studies and in the search for new anti-diabetes treatments. The system operates with two modules. The automatic annotation module applies supervised machine learning for cell detection and segmentation. The second information visualization module can be used for an interactive classification and visualization of cell types following the link-and-brush principle for filtering. We can compare the results obtained with our system with results obtained manually by an expert, who evaluated a set of example images three times to account for his intra-observer variance. The comparison shows that using our system the images can be evaluated with high accuracy which allows a considerable speed up of the time-consuming evaluation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.