Abstract

Prostate cancer lesion segmentation in multi-parametric magnetic resonance imaging (mpMRI) is crucial for pre-biopsy diagnosis and targeted biopsy guidance. Deep convolution neural networks have been widely utilized for lesion segmentation. However, these methods fail to achieve a high Dice coefficient because of the large variations in lesion size and location within the gland. To address this problem, we integrate the clinically-meaningful prostate specific antigen density (PSAD) biomarker into the deep learning model using feature-wise transformations to condition the features in latent space, and thus control the size of lesion prediction. We tested our models on a public dataset with 214 annotated mpMRI scans and compared the segmentation performance to a baseline 3D U-Net model. Results demonstrate that integrating the PSAD biomarker significantly improves segmentation performance in both Dice coefficient and centroid distance metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.