Abstract
In medical images, lesion segmentation is used to locate and isolate abnormal structures. It is an essential part of medical image analysis for precise diagnosis and care. However, obstacles exist in medical image lesion segmentation owing to things like image noise, shape and size fluctuation, and poor image quality. Automated lesion segmentation methods include conventional image processing techniques, deep learning (DL) models and machine learning (ML) algorithms to name a few. Thresholding, region growth, and active contour models are examples of conventional methods, while decision trees, random forests, and support vector machines are examples of ML techniques. DL models particularly convolutional neural networks (CNNs), have shown extraordinary performance in lesion segmentation because to their innate potential to autonomously collect high-level characteristics. The objective of the research is to study lesion segmentation in medical images and explore different methods for accurate and precise diagnosis and care.The research focuses on the obstacles faced in lesion segmentation in medical images, such as image noise, shape and size fluctuation, and poor image quality. The research also highlights the need for evaluation metrics, such as sensitivity, specificity, Dice coefficient, and Hausdorff distance, to assess the performance of lesion segmentation algorithms. Additionally, the research emphasizes the importance of annotated datasets for training and evaluating the performance of segmentation algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have