Abstract

This review article examines the current developments in applying microfluidic technologies in cancer therapy and personalized medicine. This includes the fabrication of cancer cells onto the microfluidic chips, preclinical cancer model simulation development, biomarker detection, tumor heterogeneity detection, integration of microfluidics in robotic drug delivery systems, Artificial Intelligence (AI), and discuss the use of techniques such as Machine Learning (ML) to predict pharmacokinetics and pharmacodynamics of cancer cells. This review article also highlights how integrating cancer models with microfluidic devices helps to simulate disease progression more accurately, thereby improving treatment options. These devices also enable researchers to identify suitable doses for cancer treatment. Moreover, microfluidics chips facilitate cell transformation in many types of cancer, which is important for patient-specific therapy. Microfluidics technology in robotic drug delivery enables precise delivery of targeted drugs, thus reducing the potential side effects of the drugs. Integrating these fields into the medical and pharmaceutical fields helps researchers to develop the pharmaceutical product faster than the traditional method of drug discovery. Overall, this review article highlights the integration of interdisciplinary technologies in the healthcare field, which may decrease the timeline of drug discovery and provide efficient drugs to patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.