Abstract
Phase-change materials (PCMs) stand a pivotal advancement in thermal energy storage and management due to their reversible phase transitions to store and release an abundance of heat energy. However, conventional solid-liquid PCMs suffer from fluidity and leakage in their molten state, limiting their applications at advanced levels. Herein, a novel Zn2+-crosslinked polyethylene glycol-co-polyphosphazene copolymer (PCEPN-Zn) as a solid-solid PCM through dynamic metal-ligand coordination is first designed and synthesized. The as-synthesized PCEPN-Zn is further integrated with an MXene film to construct a double-layered phase-change composite through layer-by layer adhesion. Owing to the introduction of MXene film with low emissivity, good light absorptivity, and nonflammability, the resultant phase-change composite not only presents a high latent-heat capacity, good thermal stability, high thermal reliability, and excellent shape stability, but also exhibits a superior self-healing ability, good recyclability, high adhesivity, and good flame-retardant performance. It can be easily adhered to on most objects for various application scenarios. With a combination of the excellent functions derived from PCEPN-Zn and MXene film, the developed phase-change composite exhibits broad prospects for versatile applications in the thermal management of CPUs and Li-ion batteries, thermal infrared stealth of high-temperature objects, heat therapy in the clinic, and fire-safety for various scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have