Abstract

The scale factor of thermal sensitivity serves as a crucial performance metric for micro-electromechanical system (MEMS) gyroscopes, and is commonly employed to assess the temperature stability of inertial sensors. To improve the temperature stability of the scale factor of MEMS gyroscopes, a self-compensation method is proposed. This is achieved by integrating the primary and secondary relevant parameters of the scale factor using the partial least squares regression (PLSR) algorithm. In this paper, a scale factor prediction model is presented. The model indicates that the resonant frequency and demodulation phase angle are the primary correlation terms of the scale factor, while the drive control voltage and quadrature feedback voltage are the secondary correlation terms of the scale factor. By employing a weighted fusion of correlated terms through PLSR, the scale factor for temperature sensitivity is markedly enhanced by leveraging the predicted results to compensate for the output. The results indicate that the maximum error of the predicted scale factor is 0.124% within the temperature range of -40 °C to 60 °C, and the temperature sensitivity of the scale factor decreases from 6180 ppm/°C to 9.39 ppm/°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.