Abstract
AbstractSilicon carbide (SiC) is a niche nonmetallic material that is essential in many industrial processes. Here, we integrate material flow analysis and supply chain resilience analysis to understand global SiC stocks and flows and to assess its supply chain. We use industry interviews to fill data gaps and collect information on the SiC system to overcome data scarcity. We find that globally around 1000 kt of SiC is produced each year. The biggest use of SiC is the abrasives industry (40%), followed by metallurgy (28%), refractories (20%), technical ceramics (0.7%), other uses (0.7%), and semiconductors (0.01%). As an energy‐intensive material, the SiC supply chain is under pressure, increasing the relevance of resilience considerations. Besides typical supply chain risks such as low diversity of supply and geopolitical trade restrictions, SiC particularly faces risks due to its energy‐intensive production process and associated emissions. In the SiC semiconductor supply chain, losses of nearly 75% are a particular issue. Due to high demand in the SiC market, stockpiles are negligible, and substitution is difficult in most sectors. We find that in the case of SiC, sustainability measures such as use reduction, recycling, or decreasing energy use or emissions would also positively contribute to supply chain resilience. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.