Abstract
BackgroundAdenoid cystic carcinoma (ACC) of the oral cavity is a rare head and neck cancer. This rarity contributes to the paucity of comprehensive research on this cancer thereby complicating the development of evidence-based treatment strategies. This study aims to use machine learning (ML) techniques to analyze survival outcomes and optimize treatment approaches of ACC. MethodsThe SEER database (2000–2020) was used in this study. Cox regression analysis was used to identify the prognostic variables; prognostic models using five ML algorithms were constructed to predict the 5-year survival rates. A validation method incorporating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to validate the accuracy and reliability of ML models. Also, Kaplan-Meier survival analysis was performed. ResultsThis study's sample included 645 patients. The most common primary site for ACC was the hard palate, followed by the cheek mucosa. Survival rates varied across treatment groups, with the highest rates observed in patients who underwent surgery only. ML models revealed that the most significant prognostic factors were age, metastasis, and surgery. ConclusionsThis study contributes evidence and knowledge to the limited literature on ACC and emphasizes the importance of adjuvant radiotherapy. This study highlights that metastasis and age are key prognostic factors. Furthermore, the developed ML-based web tool offers a novel approach for the personalized prognosis of these rare cancer types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Stomatology oral and Maxillofacial Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.