Abstract

To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Datasets of 361 patients (61.9 ± 10.3years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93-0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80-0.87]), segment involvement score (AUC 0.88 [95%CI 0.84-0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86-0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72-0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71-0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024). Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient's information to enhance risk stratification. • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.