Abstract
In this work we have combined machine learning techniques with our recently developed multilayer energy-based fragment method for studying excited states of large systems. The photochemically active and inert regions are separately treated with the complete active space self-consistent field method and the trained models. This method is demonstrated to provide accurate energies and gradients leading to essentially the same excited-state potential energy surfaces and nonadiabatic dynamics compared with full ab initio results. Furthermore, in conjunction with the use of machine learning models, this method is highly parallel and exhibits low-scaling computational cost. Finally, the present work could encourage the marriage of machine learning with fragment-based electronic structure methods to explore photochemistry of large systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.