Abstract
In the current world, where diabetes is day by day becoming a very common and fatal disease, it's important that proper measures be taken in order to deal with it. As per the studies, early prediction of diabetes can lead to improved treatment to avoid further complications of the disease, and in order to do so efficiently, machine learning techniques are a great deal. In this study, various factors are taken into consideration, like blood pressure, pregnancy, glucose level, age, insulin, skin thickness, and diabetes pedigree function, which together can be useful to predict whether a person has a risk of developing diabetes or not and help society with the early diagnosis of diabetes. This model is trained using three main classification algorithms, namely support vector, random forest, and decision tree classifiers. The prediction results of each of the classifiers are summarized in this study, and the decision tree gives 78.89% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Cyber Behavior, Psychology and Learning
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.