Abstract

Determining the machine learning (ML) technique that performs best on new datasets is an important factor in the design of effective anomaly-based intrusion detection systems. This study therefore evaluated four machine learning algorithms (naive Bayes, k-nearest neighbors, decision tree, and random forest) on UNSW-NB 15 dataset for intrusion detection. The experiment results showed that random forest and decision tree classifiers are effective for detecting intrusion. Random forest had the highest weighted average accuracy of 89.66% and a mean absolute error (MAE) value of 0.0252 whereas decision tree recorded 89.20% and 0.0242, respectively. Naive Bayes classifier had the worst results on the dataset with 56.43% accuracy and a MAE of 0.0867. However, contrary to existing knowledge, naïve Bayes was observed to be potent in classifying backdoor attacks. Observably, naïve Bayes performed relatively well in classes where tree-based classifiers demonstrated abysmal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.