Abstract

Wearable biosensors for real-time and non-invasive detection of biomarkers are of importance in early diagnosis and treatment of diseases. Herein, a high-performance wearable biosensing platform was proposed by combining a three-dimensional hierarchical porous Au hydrogel-enzyme electrode with high biocompatibility, activity, and flexibility and soft-MEMS technologies with high precision and capability of mass production. Using glucose oxidase as the model enzyme, the glucose sensor exhibits a sensitivity of 10.51 μA mM-1 cm-2, a long durability over 15 days, and a good selectivity. Under the mechanical deformation (0 to 90°), it is able to maintain an almost constant performance with a low deviation of <1.84%. With the assistance of a wireless or a Bluetooth module, this wearable sensing platform achieves real-time and non-invasive glucose monitoring on human skins. Similarly, continuous lactic acid monitoring was also realized with lactate oxidase immobilized on the same sensing platform, further verifying the universality of this sensing platform. Therefore, our work holds promise to provide a universal, high-performance wearable biosensing platform for various biomarkers in sweat and reliable diagnostic information for health management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.