Abstract
The explosion of data over the last decades puts significant strain on the computational capacity of the central processing unit (CPU), challenging online analytical processing (OLAP). While previous studies have shown the potential of using Field Programmable Gate Arrays (FPGAs) in database systems, integrating FPGA-based hardware acceleration with relational databases remains challenging because of the complex nature of relational database operations and the need for specialized FPGA programming skills. Additionally, there are significant challenges related to optimizing FPGA-based acceleration for specific database workloads, ensuring data consistency and reliability, and integrating FPGA-based hardware acceleration with existing database infrastructure. In this study, we proposed a novel end-to-end FPGA-based acceleration system that supports native SQL statements and storage engine. We defined a callback process to reload the database query logic and customize the scanning method for database queries. Through middleware process development, we optimized offloading efficiency on PCIe bus by scheduling data transmission and computation in a pipeline workflow. Additionally, we designed a novel five-stage FPGA microarchitecture module that achieves optimal clock frequency, further enhancing offloading efficiency. Results from systematic evaluations indicate that our solution allows a single FPGA card to perform as well as 8 CPU query processes, while reducing CPU load by 34%. Compared to using 4 CPU cores, our FPGA-based acceleration system reduces query latency by 1.7 times without increasing CPU load. Furthermore, our proposed solution achieves 2.1 times computation speedup for data filtering compared with the software baseline in a single core environment. Overall, our work presents a valuable end-to-end hardware acceleration system for OLAP databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.