Abstract
The aims of this study were 3-fold: firstly, to present an integrative approach to external and internal load dynamics for monitoring fitness and fatigue status of specific in-court rink hockey training sessions in a standard microcycle; secondly, to assess the differences between training sessions and matches; the third and final aim was to assess the association between external and internal load metrics. The external load, using a local positioning system, and internal load, using the declared rate of perceived exertion, were measured during 23 in-season microcycles for nine top-level players. Training load data were analysed with regard to the number of days before or after a match [match day (MD) minus or plus]. In relation to the first aim, internal and external load metrics merged into a single integrated system using pooled data z-scores provided an invisible monitoring tool that places the players in the fitness-fatigue continuum throughout the different microcycle sessions. In this regard, MD-4 and MD-1 sessions tend to place, with a low dispersion, the players in a “low external and internal load” zone. On the contrary, in MD-3 and MD-2 sessions, as well as in MD, in which higher loads were recorded, most of the players were within a “high external and internal load” zone with a tendency towards dispersion towards the fitness or fatigue zones. Finally, and with regard to the second and third aims, an inverted “U-shape” load dynamic related to the specific goals of each training session was the main finding in terms of comparison between MD; a load peak between MD-3 and MD-2 sessions and a significant decrease in all the load variables in MD-1 sessions were found; and high-to-low correlations were found between external and internal load metrics. This study presents an integrative approach to the external and internal load of players for monitoring fitness and fatigue status during a standard microcycle in rink hockey that might provide team sport staff members with a deeper understanding of load distribution in the microcycle in relation to the match.
Highlights
Workload in the context of sports training has been defined as the input variable which, assuming a certain level of stress, is manipulated to obtain a desired response (Impellizzeri et al, 2019)
Current models of the fitness—fatigue relationship use the association between External load (EL) and internal load (IL) (Delaney et al, 2018), considering “fatigue” as the ability to complete a task or training session with an altered IL response which recent had been achievable with a lower IL response and “fitness state” as the opposite, the ability to accumulate a given EL with a lower IL response
The match day (MD)-3 training sessions were the ones with the highest values
Summary
Workload in the context of sports training has been defined as the input variable which, assuming a certain level of stress, is manipulated to obtain a desired response (Impellizzeri et al, 2019). Load can be described as internal or external (Impellizzeri et al, 2019). External load (EL) is the work completed by the player independently of his or her internal characteristics; for example, it is described in terms of distance, accelerations, decelerations, or sprints, among others (Varley and Aughey, 2013). The resulting physiological, psychological, and biomechanical stress imposed, described as internal load (IL), drives player adaptation response (Vanrenterghem et al, 2017). Current models of the fitness—fatigue relationship use the association between EL and IL (Delaney et al, 2018), considering “fatigue” as the ability to complete a task or training session with an altered IL response which recent had been achievable with a lower IL response and “fitness state” as the opposite, the ability to accumulate a given EL with a lower IL response
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have