Abstract

This position paper is motivated by recent educational reform efforts that urge the integration of engineering in science education. We argue that it is plausible and beneficial to integrate engineering into formal K-12 science education. We illustrate how current literature, though often implicitly, discusses this integration from a pedagogical, epistemological, or methodological argumentative stance. From a pedagogical perspective, a historically dominant argument emphasizes how engineering helps make abstract science concepts more concrete. The epistemological argument is centered on how engineering is inherently interdisciplinary and hence its integrative role in support of scientific literacy and more broadly STEM literacy is natural. From a methodological perspective, arguments focus on the engineering design process, which is compatible with scientific inquiry and adaptable to answering different types of engineering questions. We call for the necessity of spelling out these arguments and call for common language as science and engineering educators form a research-base on the integration of science and engineering. We specifically provide and discuss specific terminology associated with four different models, each effectively used to integrate engineering into school science. We caution educators against a possible direction towards a convergence approach for a specific type of integrating engineering and science. Diversity in teaching models, more accurately represents the nature of engineering but also allows adaptations based on available school resources. Future synthesis can then examine student learning outcomes associated with different teaching models.

Highlights

  • In recent years, there has been an increasing interest in integrating engineering into kindergarten through high school (K-12) education

  • We argue against a possible tendency for a convergence approach towards a specific model of integrating engineering and science and offer ideas to guide curriculum, teacher professional development, and research

  • This is the critical moment for change

Read more

Summary

Introduction

There has been an increasing interest in integrating engineering into kindergarten through high school (K-12) education. Engineering design is not a new concept in science education since it has been referred to as technological design in prior reform efforts such as the National Science Education Standards (National Research Council, 1996) and Benchmarks for Science Literacy (American Association for the Advancement of Science, 1994). Massachusetts was an exception and became a pioneer state in the United States after developing explicit K-12 engineering standards in 2001 and later in 2016 adopting the Generation Science Standards (Carr, Bennett IV, & Strobel, 2012; Massachusetts Department of Education, 2001; Massachusetts Department of Elementary and Secondary Education, 2016). Moore and colleagues identified four states (Maine, Massachusetts, Minnesota, and Oregon) with explicit and comprehensive standards before the release of the Generation Science Standards (NGSS) (Moore, Tank, Glancy, & Kersten, 2015). After the release of NGSS, other states followed through with varying levels of integration

Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.