Abstract
Microseismic monitoring by downhole geophones, surface seismic, fiber-optic distributed acoustic sensing (DAS), and distributed temperature sensing (DTS) observations were made during the hydraulic fracture stimulation of the MIP-3H well in the Marcellus Shale in northern West Virginia. DAS and DTS data measure the fiber strain and temperature, respectively, along a fiber-optic cable cemented behind the casing of the well. The presence of long-period long-duration (LPLD) events is evaluated in the borehole geophones, DAS data, and surface seismic data of one of the MIP-3H stimulated stages. LPLD events are generally overlooked during the conventional processing of microseismic data, but they represent significant nonbrittle deformation produced during hydraulic fracture stimulation. In a single stage that was examined, 160 preexisting fractures and two faults of suboptimal orientation are noted in the image logs. We identified two low-frequency ([Formula: see text]) events of large temporal duration (tens of seconds) by comparing the surface seismic data, borehole geophone data, and DAS amplitude spectra of one of the MIP-3H stages. Spectrograms of DAS traces in time and depth reveal that the first low-frequency event might be an injection noise that has footprints on all DAS channels above the stimulated stage. However, the surface seismic array indicates an LPLD event concurrent with the first low-frequency event on DAS. The second LPLD event on DAS data and surface seismic data is related to a local deformation and does not have footprints on all DAS channels. The interpreted events have duration less than 100 s with frequencies concentrated below 10 Hz, and are accompanied by microseismic events.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have