Abstract

AbstractA new quaternary crystalline catalyst was obtained by a mixed hydrothermal method of integrating inorganic semiconductors, titanium oxide cluster (TOC) and molecular redox centers orderly into metal organic framework (MOF) materials. It shows a hydrogen production rate 3711.53 μmol g−1 h−1 under visible light irradiation, exceeds most of the same type of catalyst reported in recent years, and a favorable stability with. The excellent performance of the CdS/TOC/UiO‐67‐bpy/Co composites due to efficient promotion of photo‐induced carrier separation and migration, and offering abundant active sites for generating hydrogen. This work will help to guide the preparation of new efficient and stable photocatalysts and promote the effective conversion of solar energy to chemical energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.