Abstract
As known abnormal sialylation exerts crucial roles in the growth, metastasis, and immune evasion of cancers, but the molecular characteristics and roles in bladder cancer (BLCA) remain unclear. This study intends to establish BLCA risk stratification based on sialylation-related genes and elucidate its role in prognosis, tumor microenvironment, and immunotherapy of BLCA. Bulk RNA-seq and scRNA-seq data were downloaded from open-access databases. The scRNA-seq data were processed using the R package "Seurat" to identify the core cell types. The tumor sub-typing of BLCA samples was performed by the R package "ConsensusClusterPlus" in the bulk RNA-seq data. Signature genes were identified by the R package "limma" and univariate regression analysis to calculate risk scores using the R package "GSVA" and establish risk stratification of BLCA patients. Finally, the differences in clinicopathological characteristics, tumor microenvironment, and immunotherapy efficacy between the different groups were investigated. 5 core cell types were identified in the scRNA-seq dataset, with monocytes and macrophages presenting the greatest percentage, sialylation-related gene expression, and sialylation scores. The bulk RNA-seq samples were classified into 3 tumor subtypes based on 19 prognosis-related sialylation genes. The 10 differential expressed genes (DEGs) with the smallest p-values were collected as signature genes, and the risk score was calculated, with the samples divided into high and low-risk score groups. The results showed that patients in the high-risk score group exhibited worse survival outcomes, higher tumor grade, more advanced stage, more frequency of gene mutations, higher expression levels of immune checkpoints, and lower immunotherapy response. We established a novel risk stratification of BLCA from a glycomics perspective, which demonstrated good accuracy in determining the prognostic outcome, clinicopathological characteristics, immune microenvironment, and immunotherapy efficacy of patients, and we are proposing to apply it to direct the choice of clinical treatment options for patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.