Abstract

Replacing traditional internal combustion engine vehicles with electric vehicles (EVs) proves to be challenging for the transport sector, particularly due to the higher initial investment. As EVs could be more profitable by participating in the electricity markets, the aim of this paper is to investigate revenue potentials when marketing bidirectionally chargeable electric vehicles in the spot market. To simulate a realistic marketing behavior of electric vehicles, a mixed integer linear, rolling horizon optimization model is formulated considering real trading times in the day-ahead and intraday market. Results suggest that revenue potentials are strongly dependent on the EV pool, the user behavior and the regulatory framework. Modeled potential revenues of EVs of current average size marketed with 2019 German day-ahead prices are found to be at around 200 €/EV/a, which is comparable to other findings in literature, and go up to 500 €/EV/a for consecutive trading in German day-ahead and intraday markets. For future EVs with larger batteries and higher efficiencies, potential revenues for current market prices can reach up to 1300 €/EV/a. This study finds that revenues differ widely for different European countries and future perspectives. The identified revenues give EV owners a clear incentive to participate in vehicle-to-grid use cases, thereby increasing much needed flexibility for the energy system of the future.

Highlights

  • The energy system transformation entails structural changes in all sectors

  • Based on the developed aggregated storage optimization model, revenues of bidirectionally chargeable electric vehicles (EVs) have been calculated for the V2G use case arbitrage trading

  • We developed a rolling optimization model that regards real trading times of European spot markets and allows countertrading in consecutive traded markets while considering user behavior parameters leading to a realistic representation of revenue potentials of bidirectionally chargeable

Read more

Summary

Introduction

Emissions from the transport sector in Germany even increased since 1990 [1] and will, be unable to contribute to achieving the climate targets for 2020. Switching to electric vehicles (EVs) is one possible solution for lowering emissions. When comparing the carbon footprint of an EV to an internal combustion engine vehicle (ICEV), both the production of the battery as well as tailpipe emissions of the EV depend on the underlying energy system [2]. Due to a targeted reduction of CO2 -emission of the European energy sector by up to 95% [3], at least operational emissions of EVs resulting mainly from charging electricity will decrease.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call