Abstract

This paper presents the integration of connected micromobility infrastructure into the existing public transport system. The integration purpose is to help organize the public space in the urban environment, lower operation costs for micromobility operators, and create a better Mobility-as-a-Service (MaaS) experience for citizens with the connected and universal micromobility charging infrastructure solution. Our goal is to efficiently consolidate electric-powered shared micromobility vehicles such as e-scooters and e-bikes into hubs to manage their charging and maintenance operations efficiently. Therefore, determining the locations of these e-hubs and the required charging infrastructure is paramount for satisfying the commuters' needs. We address this problem using an optimization approach and develop a model for siting and sizing micromobility e-hubs within an urban context. We formulate the problem as a mixed-integer linear programming (MILP) and develop a Variable Neighbourhood Search (VNS) metaheuristic algorithm to solve the problem. The evaluation of the performance of the solution methodology is applied using real data from Ankara Metropolitan Municipality (AMM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.