Abstract

Prior studies have shown the improved ability to identify artists’ pigments by combining results from X-ray fluorescence (XRF), which provides elemental information, with reflectance spectroscopy in the visible to near infrared (400–1000 nm) that provides information on electronic transitions. Extending the spectral range of reflectance spectroscopy into the UV, 350–400 nm, allows identification of several white pigments since their electronic transitions occur in this region (e.g., zinc white and rutile and anatase forms of titanium white). Extending the range further into the infrared, out to 2500 nm, provides information on vibrational transitions of various functional groups, such as hydroxyl, carbonate, and methyl groups. This allows better identification of mineral-based pigments and some paint binders. The combination of elemental information with electronic and vibrational transitions provides a more robust method to identify artists’ materials in situ. The collection of both sets of spectral information across works of art, such as paintings and works on paper, allows generating a more complete map of artists’ materials. Here, we describe a 2-D scanner that simultaneously collects XRF spectra and reflectance spectra from 350 to 2500 nm across the surfaces of works of art. The scanner consists of a stationary, single pixel XRF spectrometer and fiber optic reflectance spectrometer along with a 2-D position-controlled easel that moves the artwork in front of the two detection systems. The dual-mode scanner has been tested on a variety of works of art from illuminated manuscripts (0.1 × 0.1 m2) to paintings as large as 1.7 × 1.9 m2. The scanner is described and two sets of results are presented. The first is the XRF scanning of a large warped panel painting by Andrea del Sarto titled Charity. The second is a combined XRF and reflectance scan of Georges Seurat’s painting titled Haymakers at Montfermeil. The XRF was collected at 1 mm spatial sampling and the reflectance spectral data at 3 mm. Combining the results from the data sets was found to enhance the identification of pigments as well as yield distribution maps, in spite of the relatively low reflectance spatial sampling. The elemental and reflectance maps allowed the identification and mapping of lead white, cobalt blue, viridian, ochres, and likely chrome yellow. The maps also provide information on the mixing of pigments. While the reflectance image cube has 10–20× larger spatial samples than desired, the elimination of having to use two hyperspectral cameras to cover the range from 400 to 2500 nm makes for a low cost dual modality scanner.

Highlights

  • Fiber-optic reflectance spectroscopy (FORS) and X-ray fluorescence (XRF) spectroscopy are non-invasive pointbased analytical methods that can be utilized in artists’ material identification

  • To ensure the broad background and the response function of XRF detectors, which allow for contributions from more than one emission peak to be collected in a specific energy bin, do not lead to errors in the maps due to elemental overlaps, various fitting strategies and software have been developed [12,13,14] and are commonly used

  • This allowed the painting to remain in the same place for the collection period required

Read more

Summary

Introduction

Fiber-optic reflectance spectroscopy (FORS) and X-ray fluorescence (XRF) spectroscopy are non-invasive pointbased analytical methods that can be utilized in artists’ material identification. This scanner has been used to collect XRF spectra and make elemental maps of several paintings [5,6,7,8,9], this work was done with a lower power X-ray source having a 65-micrometer spot size that has been replaced as described here.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call