Abstract
The hierarchical planning concept is commonly used for production planning. Dividing the planning process into subprocesses which are solved separately in the order of the hierarchy decreases the complexity and fits the common organizational structure. However, interaction between planning levels is crucial to avoid infeasibility and inconsistency of plans. Furthermore, optimizing subproblems often leads to suboptimal results for the overall problem. The alternative, a monolithic model integrating all planning levels, has been rejected in the literature because of several reasons. In this study, we show that some of them do not hold for an integrated production planning model combining the planning tasks usually attributed to aggregate production planning and master production scheduling. Therefore, we develop a hierarchical and an integrated model considering both levels, aggregate production planning and master production scheduling. Computational tests show that it is possible to solve the integrated model and that it outperforms the hierarchical approach for all instances. Moreover, an indication is given why and when integration is beneficial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.