Abstract
To tune the product selectivity by controlling the complicated reaction path is a big challenge in Fischer–Tropsch synthesis. Here, we report an integrated catalytic process for the direct conversion of syngas (CO/H2) into different types of liquid fuels without subsequent hydrorefining post-treatments of Fischer–Tropsch waxes. Outstanding selectivities for gasoline, jet fuel and diesel fuel as high as 74, 72 and 58% are achieved, respectively, by only using mesoporous Y-type zeolites in combination with cobalt nanoparticles. The types of liquid fuels can be readily tuned by controlling the porosity and acid properties of the zeolites. We further build a new product-distribution model for the bifunctional catalysts, which do not obey the traditional Anderson–Schulz–Flory (ASF) distribution. The present work offers a simple and effective method for the direct synthesis of different types of liquid fuels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have