Abstract
In this paper, we consider the solution of the problem of simultaneous localization and the construction of a map for an unmanned aerial vehicle (a quadrocopter). The structure of the integrated navigation system is developed on the basis of the fusion of several sources of navigational information, which allows to compensate the shortcomings of each source, which includes the following blocks: an improved system of visual navigation based on the use of EKF-SLAM, satellite navigation system GPS, barometric altimeter, radio altimeter, Strapdown inertial navigation system, the converter of modes of navigation. To improve the quality of the visual navigation system, an improved EKF-SLAM algorithm is proposed with the adaptation of the surveillance zone and local data association based on the improved ants algorithm, thereby avoiding obstacles. Recognition of landmarks is based on the use of the algorithm SURF. The EKF-SLAM algorithm is integrated through Adaptive Observation Range. Algorithms for dynamically changing the size of the observation zone and determining the redundancy of the detected landmarks are proposed. The extended Kalman filtering procedure for the problem under consideration and the proposed improvements are given. It is shown that the problem of SLAM data association can be represented as an optimization problem. As an optimization algorithm, an ant algorithm is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.