Abstract
Ocean related activities are often supported by offshore equipment with particular power demands. These are usually deployed at remote locations and have limited space, thus small energy harvesting technologies, such as photovoltaic panels or wind turbines, are used to power their instruments. However, the inherent energy sources are intermittent and have lower density and predictability than an alternative source: wave energy. Here, we propose and critically assess triboelectric nanogenerators (TENGs) as a promising technology for integration into wave buoys. Three TENGs based on rolling-spheres were developed and their performance compared in both a “dry” bench testing system under rotating motions, and in a large-scale wave basin under realistic sea-states installed within a scaled navigation buoy. Both experiments show that the electrical outputs of these TENGs increase with decreasing wave periods and increasing wave amplitudes. However, the wave basin tests clearly demonstrated a significant dependency of the electrical outputs on the pitch degree of freedom and the need to take into account the full dynamics of the buoy, and not only that of TENGs, when subjected to the excitations of waves. This work opens new horizons and strategies to apply TENGs in marine applications, considering realistic hydrodynamic behaviors of floating bodies. • Three rolling-sphere-based TENGs were implemented inside of a rescaled-buoy. • The electrical outputs of TENGs depend on the wave periods and wave amplitudes. • Wave basin tests showed a dependency of the electrical outputs on the pitch degree of freedom. • UL-TENG was the most efficient to harvest wave energy under realistic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.