Abstract

Wearable sweat sensors have spearheaded the thrust toward personalized health monitoring with continuous, real-time, and molecular-level insight in a noninvasive manner. However, effective sweat sampling still remains a huge challenge. Here, we introduce an intelligent Janus textile band that bridges the gap between self-pumping sweat collection, comfortable epidemic microclimate, and sensitive electrochemical biosensing via an integrated wearable platform. The dominant sweat sampling configuration is a textile with Janus wettability, which is fabricated by electrospinning a hydrophobic polyurethane (PU) nanofiber array onto superhydrophilic gauze. Based on a contact-pumping model, the Janus textile can unidirectionally and thoroughly transport sweat from skin (hydrophobic side) to embedded electrode surface (hydrophilic side) with epidemic comfort. On-body experimentation reveals that the sensitive detection of multiple biomarkers including glucose, lactate, K+, and Na+ is achieved in the pumped sweat. Such smart Janus textile bands can effectively drain epidermal sweat to targeted assay sites via interface modifications, representing a reinforced and controlled biofluids analysis pathway with physiological comfort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call