Abstract
Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.