Abstract

Reinforcement learning (RL) has emerged as a promising solution method for crane-lift path planning. However, designing appropriate reward functions for tower crane (TC) operations remains particularly challenging. Poor design of reward functions can lead to non-executable lifting paths. This paper presents a framework combining imitation learning (IL) and RL to address the challenge. The framework comprises three steps: (1) designing a virtual environment consisting of construction site models and a TC model, (2) collecting expert demonstrations through virtual reality (VR) and pretraining through behavioral cloning (BC), and (3) refining the BC policies via generative adversarial imitation learning (GAIL) and proximal policy optimization (PPO). Using the paths generated by a PPO model as the baseline, the proposed BC + PPO + GAIL model exhibited better performance in both blind and nonblind lifting scenarios. This framework has been proven to generate realistic lifting paths mirroring crane operator behavior while ensuring efficiency and safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.