Abstract

Abstract Drilling in Ledong field at Yinggehai basin of South China Sea faces challenges of high-temperature and high-pressure (HTHP). The high pore pressure and low fracture gradient results in a narrow mud weight window, especially when drilling close to overpressured reservoir. Well LD10-C was the first exploration well targeting at reservoirs in Meishan formation. Well LD10-A and LD10-B were offset wells in a distance of 15-20km drilled for reservoirs in Huangliu formation, which is above Meishan formation. During drilling, both wells encountered severe gas kick, mud loss and did not reach target. In order to drill and complete well LD10-C safely, a real-time pressure monitoring solution was introduced with integration technique of logging while drilling (LWD) and look-ahead vertical seismic profile (VSP). It helped to monitor pore pressure and fracture gradient while drilling and predicted top of the overpressured reservoir. This enabled to keep the mud weight and equivalent circulation density (ECD) within a safe margin to avoid kick and mud loss, helped to set casing as close as possible to the top of reservoir. The reservoir section was drilled with a manageable mud weight window. The main achievements of this task were: 1) accurately monitor and predicted pore pressure coefficient at reservoir. The predicted pore pressure coefficient was 2.25 SG versus 2.24 SG from actual measurement. 2) accurate prediction of reservoirs top. The predicted top depth of Sand C was 2m error with accuracy of 0.05%. The top depth of Sand D was 10m error with accuracy of 0.2%. 3) 12.25in section and 8.375in section was successfully drilled deeper with pressure monitoring. The 9 5/8in casing was set 491m deeper and 7in line was set 80m deeper than plan. As a result, well LD10-C was drilled and competed without any drilling complexities. This was first application of LWD and VSP together for pressure monitoring while drilling in Yinggehai basin. The successful completion of well LD10-C confirmed that this integrated solution was an efficient technique to predict and reduce drilling risks, optimize mud weight and casing diagram, improve operational safety and save cost in HTHP offshore drilling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call