Abstract

Quantitative phosphoproteome and transcriptome analysis of ligand-stimulated MCF-7 human breast cancer cells was performed to understand the mechanisms of tamoxifen resistance at a system level. Phosphoproteome data revealed that WT cells were more enriched with phospho-proteins than tamoxifen-resistant cells after stimulation with ligands. Surprisingly, decreased phosphorylation after ligand perturbation was more common than increased phosphorylation. In particular, 17β-estradiol induced down-regulation in WT cells at a very high rate. 17β-Estradiol and the ErbB ligand heregulin induced almost equal numbers of up-regulated phospho-proteins in WT cells. Pathway and motif activity analyses using transcriptome data additionally suggested that deregulated activation of GSK3β (glycogen-synthase kinase 3β) and MAPK1/3 signaling might be associated with altered activation of cAMP-responsive element-binding protein and AP-1 transcription factors in tamoxifen-resistant cells, and this hypothesis was validated by reporter assays. An examination of clinical samples revealed that inhibitory phosphorylation of GSK3β at serine 9 was significantly lower in tamoxifen-treated breast cancer patients that eventually had relapses, implying that activation of GSK3β may be associated with the tamoxifen-resistant phenotype. Thus, the combined phosphoproteome and transcriptome data set analyses revealed distinct signal transcription programs in tumor cells and provided a novel molecular target to understand tamoxifen resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.