Abstract

The present study demonstrates a novel strategy involving two-step fermentation of lignocellulosic hydrolysate for the integrated production of ethanol and xylitol using a newly isolated yeast strain, Candida sojae JCM 1644. The isolated strain was characterised by its carbohydrate assimilation efficiency and tolerance towards inhibitors generated during pretreatment and fermentation of lignocellulosic biomass. In brief, the study comprised alkali treatment of Brassica juncea followed by its saccharification with cellulase consortia. An isolated strain was used for the co-production of xylitol and ethanol from sugar hydrolysate, and several parameters were systematically optimised for maximum co-production of ethanol and xylitol. Out of total glucose (149.72 g/L) and xylose (84.21 g/L) present in biomass hydrolysate, a product yield of 0.45 g/g (ethanol) and 0.62 g/g (xylitol) was achieved for a two-step fermentation process, which was 15.57% and 11.78% higher than the yield achieved for ethanol and xylitol, respectively, in a one-step fermentation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.