Abstract

Assessing the urban-scale building photovoltaic (PV) potential is important for designing urban environments, retrofitting existing structures, or integrating PVs with grids. However, few studies have considered high-temporal-resolution simulations, the facade PV potential, and a comprehensive PV model simultaneously; thus, the overall accuracy of the estimation of PV potential may be limited. Therefore, this study developed an integrated framework to assess the urban-scale PV potential of rooftops and facades at high spatiotemporal resolution. The proposed approach integrates an anisotropic sky diffuse model, a vector-based shading calculation method, and a temperature-related PV performance model. The annual PV potential and spatial/temporal characteristics were analyzed in a case study of over 170,000 buildings in Beijing. The results showed that the estimated rooftop PV power generation was 7.55 TWh/y, whereas the facade PV power generation was 18.07 TWh/y, which was 239% of the rooftop PV yield. The integrated model estimated PV yield with higher accuracy than the simplified models by depicting more details. The proposed approach can be applied to the large-scale assessment of future energy systems with increasing penetration of PVs, and the results can support effective policies for the integration of PVs into the built environment in dense cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call