Abstract

Parkinson’s disease is caused by a complex interplay of genetic and environmental factors. Although a number of independent molecular pathways and processes have been associated with familial Parkinson’s disease, a common mechanism underlying especially sporadic Parkinson’s disease is still largely unknown. In order to gain further insight into the etiology of Parkinson’s disease, we here conducted genetic network and literature analyses to integrate the top-ranked findings from thirteen published genome-wide association studies of Parkinson’s disease (involving 13.094 cases and 47.148 controls) and other genes implicated in (familial) Parkinson’s disease, into a molecular interaction landscape. The molecular Parkinson’s disease landscape harbors four main biological processes—oxidative stress response, endosomal-lysosomal functioning, endoplasmic reticulum stress response, and immune response activation—that interact with each other and regulate dopaminergic neuron function and death, the pathological hallmark of Parkinson’s disease. Interestingly, lipids and lipoproteins are functionally involved in and influenced by all these processes, and affect dopaminergic neuron-specific signaling cascades. Furthermore, we validate the Parkinson’s disease -lipid relationship by genome-wide association studies data-based polygenic risk score analyses that indicate a shared genetic risk between lipid/lipoprotein traits and Parkinson’s disease. Taken together, our findings provide novel insights into the molecular pathways underlying the etiology of (sporadic) Parkinson’s disease and highlight a key role for lipids and lipoproteins in Parkinson’s disease pathogenesis, providing important clues for the development of disease-modifying treatments of Parkinson’s disease.

Highlights

  • Parkinson’s disease (PD) is the second most common neurodegenerative disease, with an estimated prevalence of 0.3%, affecting 1–2% of people over 60 years of age.[1, 2] The pathological hallmark of PD is loss of dopaminergic (DA) neurons in the substantia nigra (SN), and the presence of protein aggregates (i.e., Lewy bodies) involving synuclein alpha (SNCA) in the residual DA neurons.[3]

  • We aimed to identify the core mechanisms underlying PD pathogenesis by using bioinformatics and extensive literature analyses to integrate (1) the genes corresponding to the top-ranked single-nucleotide polymorphisms (SNPs) found in published genome-wide association studies (GWASs) of sporadic PD, and (2) other PD candidate genes into a protein interaction landscape

  • Selected PD GWAS genes and genetic network enrichment analysis Thirteen of the fifteen published PD GWASs met our inclusion criteria (Supplementary Table 1) and were used to select a total of 451 PD GWAS candidate genes based on SNPs with p < 0.0001 (Supplementary Table 2)

Read more

Summary

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, with an estimated prevalence of 0.3%, affecting 1–2% of people over 60 years of age.[1, 2] The pathological hallmark of PD is loss of dopaminergic (DA) neurons in the substantia nigra (SN), and the presence of protein aggregates (i.e., Lewy bodies) involving synuclein alpha (SNCA) in the residual DA neurons.[3]. We aimed to identify the core mechanisms underlying PD pathogenesis by using bioinformatics and extensive literature analyses to integrate (1) the genes corresponding to the top-ranked single-nucleotide polymorphisms (SNPs) found in published GWASs of sporadic PD, and (2) other PD candidate genes (e.g., familial PD genes) into a protein interaction landscape. This molecular landscape allowed us to identify the specific biological processes that are key in PD pathogenesis and provides clues for the development of novel PD treatment strategies

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.