Abstract

The integrated simulation framework for toroidal momentum transport is developed, which self-consistently calculates the neoclassical toroidal viscosity (NTV), the radial electric field and the resultant toroidal rotation together with the scrape-off-layer (SOL) physics-based boundary model. The coupling of three codes, the 1.5D transport code TOPICS, the three-dimensional (3D) equilibrium code VMEC and the 3D drift-kinetic equation solver FORTEC-3D, makes it possible to calculate the NTV due to the non-axisymmetric perturbed magnetic field caused by toroidal field coils. Analyses reveal that the NTV significantly influences in JT-60U and holds the key to determine the NTV profile. The sensitivity of the profile to the boundary rotation necessitates a boundary condition modelling for toroidal momentum. Owing to the high-resolution measurement system in JT-60U, the gradient is found to be virtually zero at the separatrix regardless of toroidal rotation velocities. Focusing on , the boundary model of toroidal momentum is developed in conjunction with the SOL/divertor plasma code D5PM. This modelling realizes self-consistent predictive simulations for operation scenario development in ITER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call